3.589 \(\int \frac {\cos ^{\frac {5}{2}}(c+d x)}{(a+b \cos (c+d x))^2} \, dx\)

Optimal. Leaf size=185 \[ \frac {\left (3 a^2-2 b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b^2 d \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}-\frac {a \left (3 a^2-4 b^2\right ) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b^3 d \left (a^2-b^2\right )}+\frac {a^2 \left (3 a^2-5 b^2\right ) \Pi \left (\frac {2 b}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{b^3 d (a-b) (a+b)^2} \]

[Out]

(3*a^2-2*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/b^2/(a^2-b
^2)/d-a*(3*a^2-4*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/b^
3/(a^2-b^2)/d+a^2*(3*a^2-5*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),
2*b/(a+b),2^(1/2))/(a-b)/b^3/(a+b)^2/d-a^2*sin(d*x+c)*cos(d*x+c)^(1/2)/b/(a^2-b^2)/d/(a+b*cos(d*x+c))

________________________________________________________________________________________

Rubi [A]  time = 0.46, antiderivative size = 185, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {2792, 3059, 2639, 3002, 2641, 2805} \[ -\frac {a \left (3 a^2-4 b^2\right ) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b^3 d \left (a^2-b^2\right )}+\frac {\left (3 a^2-2 b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b^2 d \left (a^2-b^2\right )}+\frac {a^2 \left (3 a^2-5 b^2\right ) \Pi \left (\frac {2 b}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{b^3 d (a-b) (a+b)^2}-\frac {a^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^(5/2)/(a + b*Cos[c + d*x])^2,x]

[Out]

((3*a^2 - 2*b^2)*EllipticE[(c + d*x)/2, 2])/(b^2*(a^2 - b^2)*d) - (a*(3*a^2 - 4*b^2)*EllipticF[(c + d*x)/2, 2]
)/(b^3*(a^2 - b^2)*d) + (a^2*(3*a^2 - 5*b^2)*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/((a - b)*b^3*(a + b)^2
*d) - (a^2*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(b*(a^2 - b^2)*d*(a + b*Cos[c + d*x]))

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2792

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -S
imp[((b^2*c^2 - 2*a*b*c*d + a^2*d^2)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n + 1))/(
d*f*(n + 1)*(c^2 - d^2)), x] + Dist[1/(d*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^(m - 3)*(c + d*Sin[e +
 f*x])^(n + 1)*Simp[b*(m - 2)*(b*c - a*d)^2 + a*d*(n + 1)*(c*(a^2 + b^2) - 2*a*b*d) + (b*(n + 1)*(a*b*c^2 + c*
d*(a^2 + b^2) - 3*a*b*d^2) - a*(n + 2)*(b*c - a*d)^2)*Sin[e + f*x] + b*(b^2*(c^2 - d^2) - m*(b*c - a*d)^2 + d*
n*(2*a*b*c - d*(a^2 + b^2)))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] &
& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 2] && LtQ[n, -1] && (IntegerQ[m] || IntegersQ[2*m, 2*n])

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 3002

Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[B/d, Int[(a + b*Sin[e + f*x])^m, x], x] - Dist[(B*c - A*d)/d, Int[(a +
 b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
&& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3059

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[C/(b*d), Int[Sqrt[a + b*Sin[e + f*x]]
, x], x] - Dist[1/(b*d), Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e +
 f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps

\begin {align*} \int \frac {\cos ^{\frac {5}{2}}(c+d x)}{(a+b \cos (c+d x))^2} \, dx &=-\frac {a^2 \sqrt {\cos (c+d x)} \sin (c+d x)}{b \left (a^2-b^2\right ) d (a+b \cos (c+d x))}-\frac {\int \frac {\frac {a^2}{2}-a b \cos (c+d x)-\frac {1}{2} \left (3 a^2-2 b^2\right ) \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{b \left (a^2-b^2\right )}\\ &=-\frac {a^2 \sqrt {\cos (c+d x)} \sin (c+d x)}{b \left (a^2-b^2\right ) d (a+b \cos (c+d x))}+\frac {\int \frac {-\frac {a^2 b}{2}-\frac {1}{2} a \left (3 a^2-4 b^2\right ) \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{b^2 \left (a^2-b^2\right )}+\frac {\left (3 a^2-2 b^2\right ) \int \sqrt {\cos (c+d x)} \, dx}{2 b^2 \left (a^2-b^2\right )}\\ &=\frac {\left (3 a^2-2 b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b^2 \left (a^2-b^2\right ) d}-\frac {a^2 \sqrt {\cos (c+d x)} \sin (c+d x)}{b \left (a^2-b^2\right ) d (a+b \cos (c+d x))}+\frac {\left (a^2 \left (3 a^2-5 b^2\right )\right ) \int \frac {1}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{2 b^3 \left (a^2-b^2\right )}-\frac {\left (a \left (3 a^2-4 b^2\right )\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{2 b^3 \left (a^2-b^2\right )}\\ &=\frac {\left (3 a^2-2 b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b^2 \left (a^2-b^2\right ) d}-\frac {a \left (3 a^2-4 b^2\right ) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b^3 \left (a^2-b^2\right ) d}+\frac {a^2 \left (3 a^2-5 b^2\right ) \Pi \left (\frac {2 b}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{(a-b) b^3 (a+b)^2 d}-\frac {a^2 \sqrt {\cos (c+d x)} \sin (c+d x)}{b \left (a^2-b^2\right ) d (a+b \cos (c+d x))}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.85, size = 251, normalized size = 1.36 \[ \frac {\frac {4 a^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{\left (b^2-a^2\right ) (a+b \cos (c+d x))}+\frac {\frac {2 \left (a^2-2 b^2\right ) \Pi \left (\frac {2 b}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{a+b}+\frac {2 \left (3 a^2-2 b^2\right ) \sin (c+d x) \left (\left (b^2-2 a^2\right ) \Pi \left (-\frac {b}{a};\left .\sin ^{-1}\left (\sqrt {\cos (c+d x)}\right )\right |-1\right )+2 a (a+b) F\left (\left .\sin ^{-1}\left (\sqrt {\cos (c+d x)}\right )\right |-1\right )-2 a b E\left (\left .\sin ^{-1}\left (\sqrt {\cos (c+d x)}\right )\right |-1\right )\right )}{a b^2 \sqrt {\sin ^2(c+d x)}}+4 a \left (2 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )-\frac {2 a \Pi \left (\frac {2 b}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{a+b}\right )}{(a-b) (a+b)}}{4 b d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^(5/2)/(a + b*Cos[c + d*x])^2,x]

[Out]

((4*a^2*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/((-a^2 + b^2)*(a + b*Cos[c + d*x])) + ((2*(a^2 - 2*b^2)*EllipticPi[(2
*b)/(a + b), (c + d*x)/2, 2])/(a + b) + 4*a*(2*EllipticF[(c + d*x)/2, 2] - (2*a*EllipticPi[(2*b)/(a + b), (c +
 d*x)/2, 2])/(a + b)) + (2*(3*a^2 - 2*b^2)*(-2*a*b*EllipticE[ArcSin[Sqrt[Cos[c + d*x]]], -1] + 2*a*(a + b)*Ell
ipticF[ArcSin[Sqrt[Cos[c + d*x]]], -1] + (-2*a^2 + b^2)*EllipticPi[-(b/a), ArcSin[Sqrt[Cos[c + d*x]]], -1])*Si
n[c + d*x])/(a*b^2*Sqrt[Sin[c + d*x]^2]))/((a - b)*(a + b)))/(4*b*d)

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)/(a+b*cos(d*x+c))^2,x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\cos \left (d x + c\right )^{\frac {5}{2}}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)/(a+b*cos(d*x+c))^2,x, algorithm="giac")

[Out]

integrate(cos(d*x + c)^(5/2)/(b*cos(d*x + c) + a)^2, x)

________________________________________________________________________________________

maple [B]  time = 2.24, size = 815, normalized size = 4.41 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(5/2)/(a+b*cos(d*x+c))^2,x)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2/b^3/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)
^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2
))*a+EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*b)-12*a^2/b^2/(-2*a*b+2*b^2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1
/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2
*b/(a-b),2^(1/2))-2/b^3*a^3*(-b^2/a/(a^2-b^2)*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2
)^(1/2)/(2*cos(1/2*d*x+1/2*c)^2*b+a-b)-1/2/(a+b)/a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1
/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-1/2*b/a/(a^2-b^
2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^
2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+1/2*b/a/(a^2-b^2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+
1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-3
*a/(a^2-b^2)/(-2*a*b+2*b^2)*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1
/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))+1/a/(a^2-b^2)/(-2*a*b+2*
b^2)*b^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1
/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-
1)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\cos \left (d x + c\right )^{\frac {5}{2}}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)/(a+b*cos(d*x+c))^2,x, algorithm="maxima")

[Out]

integrate(cos(d*x + c)^(5/2)/(b*cos(d*x + c) + a)^2, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\cos \left (c+d\,x\right )}^{5/2}}{{\left (a+b\,\cos \left (c+d\,x\right )\right )}^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^(5/2)/(a + b*cos(c + d*x))^2,x)

[Out]

int(cos(c + d*x)^(5/2)/(a + b*cos(c + d*x))^2, x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(5/2)/(a+b*cos(d*x+c))**2,x)

[Out]

Timed out

________________________________________________________________________________________